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1 FrontISTR Theory Manual
This software is the outcome of “Research and Development of Innovative Simulation Software” project supported by
Research and Development for Next-generation Information Technology of Ministry of Education, Culture, Sports,
Science and Technology. We assume that you agree with our license agreement of “MIT License” by using this software
either for the purpose of profit-making business or for free of charge. This software is protected by the copyright law
and the other related laws, regarding unspecified issues in our license agreement and contact, or condition without
either license agreement or contact.
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Item Content
Name of Software FrontISTR
Version 5.1
License MIT License
Correnponding Clerks FrontISTR Commons2-11-16 Yayoi, Bunkyo-ku, Tokyoc/o Institute of Engineering

Innovation, School of EngineeringE-mail�support@frontistr.com

1.1 Manuals
• Introduction
• How to install
• Theory
• User’s manual
• Tutorial

This manual describes the analysis method by the finite element method (FEM) used in FrontISTR.

Regarding the stress analysis method of solids, the infinitesimal deformation linear elasticity static analyais method
is described first, and geometric nonlinear analysis method and elastoplasticity analysis method which are required
when handling finite deformation problems are described next. Furthermore, a summarized evaluation method of
the facture mechanics parameters which can be acquired using the results of the stress analysis by FEM is described.
Finally, th eigenvalue analysis and heat conduction analysis method is described.

1.2 List of description on this manual
• PDF

• Static Analysis

– Infinitesimal Deformation Linear Elasticity Static Analysis
– Nonlinear Static Analysis Method

• Dynamic Analysis

– Dynamic Analysis Method
– Eigenvalue Analysis
– Frequency Response Analysis

• Heat Conduction Analysis

• References

1.3 Infinitesimal Deformation Linear Elastic Static Analysis
In this section, the elastic static analysis is formulated on the basis of the infinitesimal deformation theory, which
assumes linear elasticity as a stress-strain relationship.

1.3.1 Basic equations

The equilibrium equation, mechanical boundary conditions, and geometric boundary conditions (basic boundary
conditions) of solid mechanics are given by the following equations (see Fig. 2.1.1):

∇ ⋅ 𝜎 + 𝑏 = 0 𝑖𝑛 𝑉 (1)
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𝜎 ⋅ 𝑛 = 𝑡 𝑜𝑛 𝑆𝑡 (2)

𝑢 = 𝑢 𝑜𝑛 𝑆𝑢 (3)

where 𝜎, 𝑡 and 𝑆𝑡 denote stress, surface force, and body force, respectively. 𝑆𝑡 and 𝑆𝑢 represent the geometric and
mechanical boundaries, respectively.

Figure 1: Boundary value problem in solid mechanics (infinitesimal deformation problem)

Fig. 2.1.1 Boundary value problem in solid mechanics (infinitesimal deformation problem)

The strain-displacement relation in infinitesimal deformation problems is given by the following equation:

𝜀 = ∇𝑆𝑢 (4)

Furthermore, the stress-strain relationship (constitutive equation) in linear elastic bodies is given by the following
equation:

𝜎 = 𝐶 ∶ 𝜀 (5)

where, 𝐶 is a fourth-order elasticity tensor.

1.3.2 Principle of Virtual Work

The principle of the virtual work related to the infinitesimal deformation linear elasticity problem, which is equivalent
to the basic equation Eq.(1), Eq.(2) and Eq.(3), is expressed as:

∫
𝑉

𝜎 ∶ 𝛿𝜀 𝑑𝑉 = ∫
𝑆𝑡

𝑡 ⋅ 𝛿𝑢 𝑑𝑆 + ∫
𝑉

𝑏 ⋅ 𝛿𝑢 𝑑𝑉 (6)

𝛿𝑢 = 0 𝑜𝑛 𝑆𝑢 (7)

Moreover, considering the constitutive equation Eq.(5), Eq.i(6), is expressed as follows:

∫
𝑉
(𝐶 ∶ 𝜀) ∶ 𝛿𝜀 𝑑𝑉 = ∫

𝑆𝑡

𝑡 ⋅ 𝛿𝑢 𝑑𝑆 + ∫
𝑉

𝑏 ⋅ 𝛿𝑢 𝑑𝑉 (8)

In Eq.(8), 𝜀 is the strain tensor and 𝐶 is the forth-order enasticity tensor. In this case, if the strain tensor 𝜎 and 𝜀 are
represented by vector formats 𝜎̂ and ̂𝜀, respectively, the consitutive equation Eq.(5) is expressed as follows

𝜎̂ = 𝐷 ̂𝜀 (9)
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where 𝐷 is an elastic matrix.

Considering that the 𝜎̂, ̂𝜀 and Eq.(9) are expressed in vector format, Eq.(8) is expressed as follows:

∫
𝑉

̂𝜀𝑇𝐷𝛿 ̂𝜀 𝑑𝑉 = ∫
𝑆𝑡

𝛿𝑢𝑇𝑡 𝑑𝑆 + ∫
𝑉

𝛿𝑢𝑇𝑏 𝑑𝑉 (10)

Eq.(10) and Eq.(7) are the principles of the virtual work discretized in this development code.

1.3.3 Formulation

If the principle of virtual work, Eq.(10), is discretized for each finite element, the following equation is obtained:

∑
𝑒

= ∫
𝑉 𝑒

̂𝜀𝑇𝐷𝛿 ̂𝜀 𝑑𝑉 = ∑
𝑒

∫
𝑆𝑒

𝑡

𝛿𝑢𝑇𝑡 𝑑𝑆 + ∑
𝑒

∫
𝑉 𝑒

𝛿𝑢𝑇𝑏 𝑑𝑉 (11)

Using the displacement of the nodes that compose each element, the displacement field is interpolated as follows:

𝑢 =
𝑚

∑
𝑖=1

𝑁𝑖𝑢𝑖 = 𝑁𝑈 (12)

The strain at this moment, using Eq.(4), is given as follows:

̂𝜀 = 𝐵𝑈 (13)

When Eq.(12) and Eq.(13) are substituted into Eq.(11), the following equation is obtained:

∑
𝑒

𝛿𝑈𝑇 (∫
𝑉 𝑒

𝐵𝑇𝐷𝐵 𝑑𝑉) 𝑈 = ∑
𝑒

𝛿𝑈𝑇 ⋅ ∫
𝑆𝑒

𝑡

𝑁𝑇𝑡 𝑑𝑆 + ∑
𝑒

𝛿𝑈𝑇 ∫
𝑉 𝑒

𝑁𝑇𝑏 𝑑𝑉 (14)

Eq.(14) can be summarized as

𝛿𝑈𝑇𝐾𝑈 = 𝛿𝑈𝑇𝐹 (15)

In this case, the components of the matrix and vector defined by Eq.(16) and Eq.(17) can be calculated for each finite
and overlapped element:

𝐾 = ∑
𝑒

∫
𝑉 𝑒

𝐵𝑇𝐷𝐵𝑑𝑉 (16)

𝐹 = ∑
𝑒

(∫
𝑆𝑒

𝑡

𝑁𝑇𝑡 𝑑𝑆 + ∫
𝑉 𝑒

𝑁𝑇𝑏 𝑑𝑉 ) (17)

if Eq.(15) is true for an arbitary virtual displacement 𝛿𝑈, tha following equation is obtained:

𝐾𝑈 = 𝐹 (18)

Meanwhile, the displacement boundary conditioni Eq.(3) is expressed as follows:

𝑈 = 𝑈 (19)

By solving Eq.(18) based on the constraint condition Eq.(19), it is possible to define the node displacement 𝑈.
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1.4 Non-linear Static Analysis Method
As mentioned previously, in the analysis of infinitesimal deformation problems, it is possible to use the principle of
virtual work, which is equivalent to the basic equations (the equilibrium equation), to perform finite element analysis
by discretizing this equation with finite elements. Therefore, analyses of finite deformation problems that deal with
large deformations of structures are typically conducted with the principle of virtual work.

However, in finite deformation problems, the equation of the principle of virtual work is non-linear in relation to
displacement even if it the material is assumed to be linear.

Generally, non-linear equations are solved by iteration methods.

These type of iterative calculations are performed through incremental analysis, which is performed on small load
increments that are accumulated until the final deformation state is reached. If an infinitesimal deformation problem is
assumed, there will be no distinction in the arrangement to define the strain and stress before and after the deformation.
Thus, the basic equation can be described before or after the deformation with no problem.

However, in the case of increment analysis in finite deformation problems, it is possible to choose between the initial
state or the starting point of the increment. The former is called the total Lagrange method and the latter is called
the updated Lagrange method. For more details, refer to the references at the end of this chapter.

In this development code, both the total and updated Lagrange methods were adopted.

1.4.1 Geometric non-linear analysis method

1.4.1.1 Incremental decomposition of virtual work equation

In this section, an increment analysis is performed wherein the status is known until time 𝑡 and unknown until
𝑡′ = 𝑡 + Δ𝑡 (See to Fig. 2.2.1). The equilibrium equation, of the static boundary value problem, mechanical boundary
conditions, and geometric boundary conditions (basic boundary condidions) are as follows:

∇𝑡′
𝑥

⋅𝑡′ 𝜎 +𝑡′ 𝑏 = 0 𝑖𝑛 𝑉 (20)

𝑡′𝜎 ⋅𝑡′ 𝑛 =𝑡′ 𝑡 𝑜𝑛 𝑡′𝑆𝑡 (21)

𝑡′𝑢 =𝑡′ 𝑢 𝑜𝑛 𝑡′𝑆𝑢 (22)

𝑡′𝜎�𝑡′𝑏�𝑡′𝑛�𝑡′𝑡�and 𝑡′𝑢 are the Cauchy stress (true stress), body force, outward until normal vector on body surface,
predetermined surfacxe force, and predetermined displacement at time 𝑡′, respectively. These equations are described
for the arrangements of 𝑡′𝑣, 𝑡′𝑠𝑡, 𝑡′𝑠𝑢 at time ′𝑡.

Fig. 2.2.1: Concept of incremental analysis
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1.4.2 Principle of Virtual Work

The principle of virtual work equivalent to the equilibrium equation of Eq.(20) and mechanical boundary conditions of
Eq.(21) is given by the following equation:

∫
𝑡′𝑣

𝑡′𝜎 ∶ 𝛿𝑡′𝐴(𝐿) 𝑑𝑡′𝑣 = ∫
𝑡′

𝑡′𝑠𝑡

𝑡 ⋅ 𝛿𝑢 𝑑𝑡′𝑠 + ∫
𝑡′

𝑉
𝑏 ⋅ 𝛿𝑢 𝑑𝑡′𝑣 (23)

where 𝑡′𝐴(𝐿) is the linear part of the Almansi strain tensor, which is expressed by the following equation:

𝑡′𝐴(𝐿) = 1
2

⎧{
⎨{⎩

𝜕𝑡′𝑢
𝜕𝑡′𝑥

+ (𝜕𝑡′𝑢
𝜕𝑡′𝑥

)
T⎫}

⎬}⎭
(24)

Eq.(23) should be solved along with the geometric boundary conditions, strain displacement relation, and stress-strain
relationship equation; however Eq.(23) is described with the arrangement at time 𝑡′, which is still unknown at this
stage. Therefor, a formulation with reference to arrangement 𝑉 at time 0 or arrangement 𝑡′𝑣 at time 𝑡 has to be
performed.

1.4.2.1 Formulation of total Lagrange method

In this section, a formulation based on the total Lagrange method used in the development code is described.

The principle of virtual work equation at time 𝑡′ with reference to the initial arrangement at time 0 is given by the
following equation:

∫
𝑉

𝑡′

0 𝑆 ∶ 𝛿𝑡′

0 𝐸 𝑑𝑉 =𝑡′ 𝛿𝑅 (25)

𝑡′𝛿𝑅 = ∫
𝑆𝑡

𝑡′

0 𝑡 ⋅ 𝛿𝑢 𝑑𝑆 + ∫
𝑉

𝑡′

0 𝑏 ⋅ 𝛿𝑢 𝑑𝑉 (26)

where 𝑡′

0 𝑆 and 𝑡′

0 𝐸 represent the second Piola–Kirchhoff strain tensor and Green–Lagrange strain tensor, respectively,
at time 𝑡′ with reference to the initial arrengement at time 0. Furthermore, 𝑡′

0 𝑡 and 𝑡′

0 𝑏 are the surface force vector
and body force coverted per unit volume of the initial arrangement, respectively, and are expressed as follows when
associated with Eq.(20), Eq.(21) and Eq.(22):

𝑡′

0 𝑡 = 𝑑𝑡′𝑠𝑡′

𝑑𝑆
𝑡 (27)

𝑡′

0 𝑏 = 𝑑𝑡′𝑣𝑡′

𝑑𝑉
𝑏 (28)

The Green-Langrange strain tensor at time 𝑡 is defined by the following equation:

𝑡′

0 𝐸 = 1
2

{𝜕𝑡𝑢
𝜕𝑋

+ (𝜕𝑡𝑢
𝜕𝑋

)
𝑇

+ (𝜕𝑡𝑢
𝜕𝑋

)
𝑇

⋅ 𝜕𝑡𝑢
𝜕𝑋

} (29)

The displacement at time 𝑡′ and the second Piola-Kirchhoff stress 𝑡′𝑢, 𝑡′

0 𝑆 can be represented with incremental
decomposition as follows:

𝑡′𝑢 =𝑡 𝑢 + Δ𝑢 (30)

𝑡′

0 𝑆 =𝑡
0 𝑆 + Δ𝑆 (31)
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The increment of Green-Lagrrange strain, in connection with the displacement increment, is defined by the following
equation:

𝑡′

0 𝐸 =𝑡
0 𝐸 + Δ𝐸 (32)

Δ𝐸 = Δ𝐸𝐿 + Δ𝐸𝑁𝐿 (33)

Δ𝐸𝐿 = 1
2

{𝜕Δ𝑢
𝜕𝑋

+ (𝜕Δ𝑢
𝜕𝑋

)
𝑇

+ (𝜕Δ𝑢
𝜕𝑋

)
𝑇

⋅ 𝜕𝑡𝑢
𝜕𝑋

+ (𝜕𝑡𝑢
𝜕𝑋

)
𝑇

⋅ 𝜕Δ𝑢
𝜕𝑋

} (34)

Δ𝐸𝑁𝐿 = 1
2

(𝜕Δ𝑢
𝜕𝑋

)
𝑇

⋅ 𝜕Δ𝑢
𝜕𝑋

(35)

If Eq.(30), Eq.(31), Eq.(32), Eq.(33), Eq.(34) and Eq.(35) are substituted into Eq.(25) and Eq.(26), the following
equation is obtained:

∫
𝑉

Δ𝑆 ∶ (𝛿Δ𝐸𝐿 + 𝛿Δ𝐸𝑁𝐿)𝑑𝑉 + ∫
𝑉

𝑡
0𝑆 ∶ 𝛿Δ𝐸𝑁𝐿 𝑑𝑉 =𝑡′ 𝛿𝑅 − ∫

𝑉

𝑡
0𝑆 ∶ 𝛿Δ𝐸𝐿 𝑑𝑉 (36)

In this case, it is assumed that Δ𝑆 is associated with Δ𝐸𝐿 and the forth-order tensor 𝑡
0𝐶, and is expressed as follows:

Δ𝑆 =𝑡
0 𝐶 ∶ Δ𝑡𝐸𝐿 (37)

By substituting Eq.(37) into Eq.(36), and omitting Δ𝑆 ∶ 𝛿Δ𝐸𝑁𝐿 with Δ𝑢 of second or higher order, the following
equation is obtained:

∫
𝑉
(𝑡
0𝐶Δ𝐸𝐿) ∶ 𝛿Δ𝐸𝐿 𝑑𝑉 + ∫

𝑉

𝑡
0𝑆 ∶ 𝛿Δ𝐸𝑁𝐿 𝑑𝑉 =𝑡′

0 𝛿𝑅 − ∫
𝑉

𝑡
0𝑆 ∶ 𝛿Δ𝐸𝐿 𝑑𝑉 (38)

Further, if Eq.(38) is discretized by the finite element, following equation is obtained:

𝛿𝑈𝑇(𝑡
0𝐾𝐿 +𝑡

0 𝐾𝑁𝐿)Δ𝑈 = 𝛿𝑈𝑇 𝑡′

0 𝐹 − 𝜕𝑈𝑇 𝑡
0𝑄 (39)

where 𝑡
0𝐾, 𝑡

0𝐾𝑁𝐿, 𝑡′

0 𝐹, 𝑡
0𝑄 denote the initial displacement matrix, initial stress matrix, external force vector, and

internal stress vector, respectively.

Therefore, the recurrence formula to determine the status from time 𝑡 to time 𝑡′ is given by the following equation:

𝑖 = 0

Step1 : 𝑡′

0 𝐾(0) =𝑡
0 𝐾𝐿 +𝑡

0 𝐾𝑁𝐿; 𝑡′

0 𝑄(0) =𝑡
0 𝑄; 𝑈 (0) =𝑡 𝑈

Step2 : 𝑡′

0 𝐾(𝑖)Δ𝑈 (𝑖) =𝑡′

0 𝐹 −𝑡′

0 𝑄(𝑖−1)

Step3 : 𝑡′𝑈 (𝑖) =𝑡′ 𝑈 (𝑖−1) + Δ𝑈 (𝑖)

𝑖 = 𝑖 + 1
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1.4.2.2 Formulation of the Updated Lagrange Method

The principle of the virtual work equation at time 𝑡′ with reference to the arrangement at time 𝑡 given by the following
equation:

∫
𝑉

𝑡′

𝑡 𝑆 ∶ 𝛿𝑡′

𝑡 𝐸𝑑𝑉 = 𝑡′𝛿𝑅 (40)

𝑡′𝛿𝑅 = ∫
𝑆𝑡

𝑡′

𝑡 𝑡 ⋅ 𝛿𝑢 𝑑𝑆 + ∫
𝑉

𝑡′

𝑡 𝑏 ⋅ 𝛿𝑢 𝑑𝑉 (41)

However,

𝑡′

𝑡 𝑡 = 𝑑𝑡′𝑠𝑡′

𝑑𝑡𝑠
𝑡 (42)

𝑡′

𝑡 𝑏 = 𝑑𝑡′𝑣𝑡′

𝑑𝑡𝑣
𝑏 (43)

While tensor 𝑡′

𝑡 𝑆 and 𝑡′

𝑡 𝐸 and vector 𝑡′

𝑡 𝑡 and 𝑡′

𝑡 𝑏 are are based on arrangement at time 𝑡, the Green-Lagrange strain
does not include the initial displacement (displacement until time 𝑡 𝑡𝑢:

𝑡′

𝑡 𝐸 = Δ𝑡𝐸𝐿 + Δ𝑡𝐸𝑁𝐿 (44)

Further, this becomes

Δ𝑡𝐸𝐿 = 1
2

{𝜕Δ𝑢
𝜕𝑡 𝑥

+ (𝜕Δ𝑢
𝜕𝑡 𝑥

)
𝑇
} (45)

Δ𝑡𝐸𝑁𝐿 = 1
2

(𝜕Δ𝑢
𝜕𝑡 𝑥

)
𝑇

⋅ 𝜕Δ𝑢
𝜕𝑡 𝑥

(46)

However,

𝑡
𝑡′𝑆 =𝑡

𝑡 𝑆 + Δ𝑡𝑆 (47)

Thus, if this is substituted into Eq.(40), Eq.(41), and Eq.(44), the eqation to be solved is as follows:

∫
𝑡𝑣

Δ𝑡𝑆 ∶ (𝛿Δ𝑡𝐸𝐿 + 𝛿Δ𝑡𝐸𝑁𝐿)𝑑𝑡𝑣 + ∫
𝑡𝑣

𝑡′

𝑡 𝑆 ∶ 𝛿Δ𝑡𝐸𝑁𝐿 𝑑𝑡𝑣 =𝑡′ 𝛿𝑅 − ∫
𝑡𝑣

𝑡
𝑡𝑆 ∶ 𝛿Δ𝑡𝐸𝐿 𝑑𝑡𝑣 (48)

In this case, it is assumed that Δ𝑡𝑆 with Δ𝑡𝐸𝑡 and forth-order tensor 𝑡
𝑡𝐶, and is expressed as follows:

Δ𝑡𝑆 =𝑡
𝑡 𝐶 ∶ Δ𝑡𝐸𝐿 (49)

If this is substituted Eq.(48), the following equation is obtained:

∫
𝑉
(𝑡
𝑡𝐶Δ𝑡𝐸𝐿) ∶ 𝛿Δ𝑡𝐸𝐿 𝑑𝑉 + ∫

𝑉

𝑡
𝑡𝑆 ∶ 𝛿Δ𝑡𝐸𝑁𝐿 𝑑𝑉 =𝑡′ 𝛿𝑅 − ∫

𝑉

𝑡
𝑡𝑆 ∶ 𝛿Δ𝑡𝐸𝐿 𝑑𝑉 (50)

By discretizing Eq.(50) with finite elements, as following equation is acquired:

𝛿𝑈𝑇(𝑡
𝑡𝐾𝐿 +𝑡

𝑡 𝐾𝑁𝐿)Δ𝑈 = 𝛿𝑈𝑇 𝑡′

𝑡 𝐹 − 𝜕𝑈𝑇 𝑡
𝑡𝑄 (51)
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where 𝑡
𝑡𝐾𝐿, 𝑡

𝑡𝐾𝑁𝐿, 𝑡′

𝑡 𝐹 and 𝑡
𝑡𝑄 denote the initial displacement matrix, initial stress matrix, external force vector, and

internal stress vector, respectively.

Therefore, the recurrence formula to determine the status from time 𝑡 to 𝑡’ is given by the following equation:

𝑖 = 0

Step1 : 𝑡′

𝑡 𝐾(𝑖) = 𝑡
𝑡𝐾𝐿 +𝑡

𝑡 𝐾𝑁𝐿; 𝑡′

𝑡 𝑄(𝑖) = 𝑡
𝑡𝑄; 𝑈 (𝑖) = 𝑡𝑈

Step2 : 𝑡′

𝑡 𝐾(𝑖)Δ𝑈 (𝑖) = 𝑡′

𝑡 𝐹 −𝑡′

𝑡 𝑄(𝑖−1)

Step3 : 𝑡′𝑈 (𝑖) = 𝑡′𝑈 (𝑖−1) + Δ𝑈 (𝑖)

𝑖 = 𝑖 + 1

1.4.3 Material Non-linear Analysis Method

With this development code, it is possible to analyze two types of non-linear materials; materials with isotropic
hyperelasticity and elastoplasticity.

If the material to be analyzed is elastoplastic, the updated Lagrange method is applied. If it is hyperelastic, the total
Lagrange method. Furthermore, the Newton–Raphson method is applied to the iterative analysis method.

These material constitutive equations are discussed ahead.

1.4.3.1 Hyperelastic Material

The elastic potential energy in isotropic hyperelastic materials is obtained from an isotropic response from an
unstressed initial state. It can be represented as a function of the principal invariants of the Cauchy–Green deformation
tensor 𝐶(𝐼1, 𝐼2, 𝐼3) or the principal invariants of deformation tensor (𝐼1, 𝐼2, 𝐼3) excluding volume change; that is, as
𝑊 = 𝑊(𝐼1, 𝐼2, 𝐼3) or 𝑊 = 𝑊(𝐼1, 𝐼2, 𝐼3).

The constitutive equation of a hyperelastic material is defined by the relationship between the second Piola–Kirchhoff
stress and Green–Lagrange strain, and the total Lagrange method is applicable for its deformation analysis.

The elastic potential energy 𝑊 of the hyperelastic models included in this development code is listed below. If
the elastic potential energy 𝑊 is known, the second Piola–Kirchhoff stress and the stress-strain relationship can be
calculated as follows:

𝑆 = 2𝜕𝑊
𝜕𝐶

(52)

𝐶 = 4 𝜕2𝑊
𝜕𝐶𝜕𝐶

(53)

1.4.3.1.1 (1) Neo-Hookean hyperelasticity model

The Neo-Hookean hyperelasticity model is an expansion of the isotropic linear law (Hooke’s law); thus, it is compatible
with large deformation problems. Its elastic potential is as follows:

𝑊 = 𝐶10(𝐼1 − 3) + 1
𝐷1

(𝐽 − 1)2 (54)

where 𝐶10 and 𝐷1 are the material constants.

1.4.3.1.2 (2) Mooney-Rivlin hyperelasticity model

𝑊 = 𝐶10(𝐼1 − 3) + 𝐶01(𝐼2 − 3) + 1
𝐷1

(𝐽 − 1)2 (55)

where, 𝐶10, 𝐶01 and 𝐷1 are the material constants.
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1.4.3.1.3 (3) Arruda Boyce hyperelasticity model

𝑊 = 𝜇 [1
2

(𝐼1 − 3) + 1
20𝜆2

𝑚
(𝐼1

2 − 9) + 11
1050𝜆2

𝑚
(𝐼1

3 − 27)

+ 19
7000𝜆2

𝑚
(𝐼1

4 − 81) + 519
673750𝜆2

𝑚
(𝐼1

5 − 243)] + 1
𝐷

(𝐽2 − 1
2

− ln 𝐽) (56)

𝜇 = 𝜇0

1 +
3

5𝜆2
𝑚

+
99

175𝜆4
𝑚

+
513

875𝜆6
𝑚

+
42039

67375𝜆8
𝑚

(57)

where 𝜇, 𝜆𝑚 and 𝐷 are the material constants.

1.4.3.2 Elastoplastic materials

In this development code, an elastoplastic constitutive equation that follows the associated flow rule is applied.
Furthermore, its constitutive equation represents the relationship between the Jaumman speed of Kirchhoff stress and
deformation speed tensor, and the updated Lagrange method is applicable for its deformation analysis.

1.4.3.2.1 (1) Elastoplastic constitutive Equation

The yield criteria of an elasto-plastic solid is assumed to be given as follows:

Initla yield conditions:

𝐹(𝜎, 𝜎𝑦0
) (58)

Subsequent yield conditions:

𝐹(𝜎, 𝜎𝑦(𝑒𝑝)) (59)

where

• 𝐹 : Yield function
• 𝜎𝑦0

: Initial yield stress
• 𝜎𝑦 : Consecutive yield stress
• 𝜎 : Stress tensor
• 𝑒 : Infinitesimal strain tensor
• 𝑒𝑝 : Plastic strain tensor
• 𝑒𝑝 : Equivalent plastic strain

It is assumed that the relationship between yield stress and equivalent plastic strain corresponds to that between
stress in uniaxial state and plastic strain.

The relationship between stress in uniaxial state and plastic strain

𝜎 = 𝐻(𝑒𝑝) (60)

𝑑𝜎
𝑑𝑒𝑝 = 𝐻′ (61)

where 𝐻′ is the modulus of strain hardening

The relationship between equivalent stress and equivalent plastic strain

𝜎 = 𝐻(𝑒𝑝) (62)
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𝜎̇ = 𝐻′ ̇𝑒𝑝 (63)

The subsequent yield function is normally a function of temperature and plastic strain work; however, to simplify, it
is a function of only equivalent plastic strain 𝑒−𝑝 in this case. Moreover, 𝐹 = 0 continues to be satisfied during the
plastic deformation; thus, the following equation must hold:

̇𝐹 = 𝜕𝐹
𝜕𝜎

∶ 𝜎̇ + 𝜕𝐹
𝜕𝑒𝑝 ∶ ̇𝑒𝑝 = 0 (64)

where ̇𝐹 represents the time derivative of 𝐹, and the time derivative of a certain amount 𝐴 is represented by ̇𝐴.

In this case, assuming the existence of plastic potential Θ, the plastic strain speed is speed represented by the following
equation:

̇𝑒𝑝 = 𝜆̇𝜕Θ
𝜕𝜎

(65)

where 𝜆̇ is a coefficient.

Moreover, considering that the plastic potential Θ is equivalent to the yield function 𝐹, the associated flow rule of the
following equation is assumed:

̇𝑒𝑝 = 𝜆̇𝜕𝐹
𝜕𝜎

(66)

If this is substituted into Eq.(64), the following equation is obtained:

𝜆̇ = 𝑎𝑇 ∶ 𝑑𝐷
𝐴 + 𝑎𝑇 ∶ 𝐷 ∶ 𝑎

̇𝑒 (67)

Where 𝐷 is an elasticity matrix,

𝑎𝑇 = 𝜕𝐹
𝜕𝜎

𝑑𝐷 = 𝐷𝑎𝑇 𝐴 = − 𝑎
𝜆̇

𝜕𝐹
𝜕𝑒𝑝 ∶ ̇𝑒𝑝 (68)

The stress-strain relationship equation of elastoplasticity can be expressed as follows

𝜎 = {𝐷 − 𝑑𝐷 ⊗ 𝑑𝑇
𝐷

𝐴 + 𝑑𝑇
𝐷𝑎

} ∶ ̇𝑒 (69)

When the yield function Eq.(69) of an elastoplastic material is known, the constitutive equation can be acquired from
this equation.

1.4.3.2.2 (1) Yield Function

The elastoplastic yield functions included in this development code are as follows:

• Von Mises yield function:

𝐹 = √3𝐽2 − 𝜎𝑦 = 0 (70)

• Mohr-Coulomb yield function:

𝐹 = 𝜎1 − 𝜎3 + ( 𝜎1 + 𝜎3 ) sin 𝜙 − 2 𝑐 cos 𝜙 = 0 (71)

• Drucker-Prager yield function:

11



𝐹 = √𝐽2 − 𝛼 𝜎 ∶ 𝐼 − 𝜎𝑦 = 0 (72)

where the material constants 𝛼 and 𝜎𝑦 are calculated from viscosity and friction angle of the material.

𝛼 = 2 sin 𝜙
3 + sin 𝜙

𝜎𝑦 = 6 𝑐 cos 𝜙
3 + sin 𝜙

(73)

1.4.3.3 Viscoelastic material

In this development code, the generalized Maxwell model is applied for viscoelastic materials. The constitutive
equation is a function of deviatoric strain 𝑒 and deviatoric viscous strain 𝑞.

𝜎 (𝑡) = 𝐾𝑡𝑟𝜀𝐼 + 2𝐺(𝜇0𝑒 + 𝜇𝑞) (74)

where

𝜇𝑞 =
𝑀

∑
𝑚=1

𝜇𝑚𝑞(𝑚)
𝑀

∑
𝑚=0

𝜇𝑚 = 1 (75)

Furthermore, 𝑞 can be determined from

̇𝑞(𝑚) + 1
𝜆𝑚

𝑞(𝑚) = ̇𝑒 (76)

where 𝜆𝑚 is relaxation, and the relaxation coefficient 𝐺 is represented by the following Prony series:

𝐺(𝑡) = 𝐺 [𝜇0 +
𝑀

∑
𝑖=1

𝜇𝑚 exp ( −𝑡
𝜆𝑚

)] (77)

1.4.3.4 Creep material

A displacement under constant stress with time dependence is a phenomenon called “creep”.

The previously mentioned viscoelastic behavior can also be considered as a type of linear creep phenomenon. In this
section, a few types of non-linear creep are explained. For this phenomenon, a method that creates a constitutive
equation by adding it to an instantaneous strain is typically used, and the strain when a constant load is applied is
defined as creep strain 𝜀𝑐. The most commonly used constitutive equation that considers creep is creep strain speed

̇𝜀𝑐, which is defined as a function of stress and total creep strain:

̇𝜀𝑐 ≡ 𝜕𝜀𝑐

𝜕𝑡
= 𝛽( 𝜎, 𝜀𝑐 ) (78)

In this case, if the instantaneous strain is assumed as the elasticity strain 𝜀𝑒, the total strain is expressed as an addition
of creep strain to it.

𝜀 = 𝜀𝑒 + 𝜀𝑐 (79)

where

𝜀𝑒 = 𝑐𝑒−1 ∶ 𝜎 (80)

As previously mentioned in plastic materials, it is necessary to show the method of time integration on numerical
analysis for the constitutive equation that indicates creep. The constitutive equation when creep is considered is
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𝜎𝑛+1 = 𝑐 ∶ (𝜀𝑛+1 − 𝜀𝑐
𝑛+1) (81)

𝜀𝑐
𝑛+1 = 𝜀𝑐

𝑛 + Δ𝑡 𝛽𝑛+𝜃 (82)

where 𝛽𝑛+𝜃 is

𝛽𝑛+𝜃 = (1 − 𝜃)𝛽𝑛 + 𝜃𝛽𝑛+1 (83)

Furthermore, the creep strain increment Δ𝜀𝑐 is a simplified non-linear equation,

𝑅𝑛+1 = 𝜀𝑛+1 − 𝑐−1 ∶ 𝜎𝑛+1 − 𝜀𝑐
𝑛 − Δ𝑡 𝛽𝑛+𝜃 = 0 (84)

In the iterative calculation of the Newton-Raphson method, using the initial value as a strain increment determined
from 𝜎𝑛+1 = 𝜎𝑛 and the finite element method, the iterative and incremental solution are as follows:

𝑅(𝑘+1)
𝑛+1 = 0 = 𝑅(𝑘)

𝑛+1 − ( 𝑐−1 + Δ𝑡 𝑐𝑐
𝑛+1 )𝑑𝜎(𝑘)

𝑛+1 (85)

where

𝑐𝑐
𝑛+1 = 𝜕𝛽

𝜕𝜎
∣
𝑛+𝜃

= 𝜃𝜕𝛽
𝜕𝜎

∣
𝑛+1

(86)

When the iterative solution is performed using the solutions of Eq.(84) and Eq.(85) until the residual 𝑅 becomes 0,
stress 𝜎𝑛+1 and the tangent coefficient are used as follows:

𝑐∗
𝑛+1 = [𝑐−1 + Δ𝑡𝑐𝑐

𝑛+1]−1 (87)

As a specific equation of Eq.(77), this development code applies the Norton model below. Its constitutive equation is
represented as follows, where the equivalent creep strain ̇𝜀𝑐𝑟 is a function of Mises stress 𝑞 and time 𝑡:

̇𝜀𝑐𝑟 = 𝐴𝑞𝑛𝑡𝑚 (88)

where 𝐴, 𝑚 and 𝑛 are the material constants.

1.4.4 Contact Analysis Method

When two objects contact each other, the contact force 𝑡𝑐 is conducted through the contact surface. The principle of
virtual work Eq.(23) can be expressed as follows:

∫
𝑡′

𝑡′𝑣

𝑡′𝜎 ∶ 𝛿𝑡′𝐴(𝐿)𝑑𝑡′𝑣 = ∫
𝑡′

𝑡′𝑆𝑡

𝑡′𝑡 ⋅ 𝛿𝑢𝑑𝑡′𝑠 + ∫
𝑡′

𝑉
𝑏 ⋅ 𝛿𝑢𝑑𝑡′𝑣 + ∫

𝑡′

𝑡′𝑆𝑐

𝑡𝑐[𝛿𝑢(1) − 𝑢(2)] (89)

where 𝑆𝑐 is contact area, and 𝑢(1) and 𝑢(2) represent the displacement of contact objects 1 and 2, respectively.

In the contact analysis, the surfaces with possible contact are designated as pairs; one of the surfaces is the master
surface, and the other is the slave surface. In this master-slave analysis method, the following contact constraint
conditions are assumed:

1. The slave nodes do not perforate the master surface.
2. When the contact occurs, the slave node is defined as the contact position through which the master and slave

surface transfer the contact and frictional forces to each other.
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If the last term of Eq.(74) is discretized by finite elements, the following equation is obtained:

∫
𝑡′

𝑡′𝑆𝑐

𝑡𝑐[𝛿𝑢(1) − 𝛿𝑢(2)] ≈ 𝛿𝑈𝐾𝑐Δ𝑈 + 𝛿𝑈𝐹𝑐 (90)

where 𝐾𝑐 and 𝐹𝑐 represent the contact stiffness matrix and contact force, respectively. By substituting this equation
into Eq.(39) or Eq.(51), the finite element equation of the total Lagrange method (which considers the contact
constraint) and the updated Lagrange method become:

𝛿𝑈𝑇(𝑡
0𝐾𝐿 +𝑡

0 𝐾𝑁𝐿 + 𝐾𝑐)Δ𝑈 = 𝛿𝑈𝑇𝑡′

0 𝐹 − 𝜕𝑈𝑇𝑡
0𝑄 + 𝛿𝑈𝐹𝑐 (91)

𝛿𝑈𝑇(𝑡
𝑡𝐾𝐿 +𝑡

𝑡 𝐾𝑁𝐿 + 𝐾𝑐)Δ𝑈 = 𝛿𝑈𝑇𝑡′

𝑡 𝐹 − 𝜕𝑈𝑇𝑡
𝑡𝑄 + 𝛿𝑈𝐹𝑐 (92)

With this development software, it is possible to analyze the contact deformation between two deformable bodies, and
the user can choose from the following analysis functions:

• Infinitesimal sliding contact problem: This analysis assumes that the position of the contact point does not
change.

• Finite sliding contact problem: This analysis supports cases where the contact position changes because of
deformation.

• Contact problem without friction
• Contact problem with friction: This analysis supports the Coulomb friction law.

However, when the infinitesimal deformation linear elastic analysis is chosen, it becomes a problem without infinitesimal
sliding friction.

Furthermore, at this point, it only supports contact analysis of primary solid elements (element numbers 341, 351, and
361).

1.5 Dynamic Analysis Method
In this section, the dynamic problem analysis method with a direct time integration method applied is described. As
presented below, with this development code, it is possible to perform time history response analysis by an implicit or
explicit method.

1.5.1 Formulation of the implicit method

Focusing on dynamic problems, the direct time integration method was applied to solve the following equation motion
indicated:

𝑀(𝑡 + Δ𝑡)𝑈̈(𝑡 + Δ𝑡) + 𝐶(𝑡 + Δ𝑡) ̇𝑈(𝑡 + Δ𝑡) + 𝑄(𝑡 + Δ𝑡) = 𝐹(𝑡 + Δ𝑡) (93)

where 𝑀 and the mass matrix, 𝐶 is the damping matrix, and 𝑄 is the internal stress vector, and 𝐹 is the external
force vector. This software does not consider the changes in mass; thus, the mass matrix is non-linear and constant
regardless of deformation.

The displacement within time increment Δ𝑡, and the change in speed and acceleration are approximated with the
Newmark-𝛽 method, as expressed in Eq.(94) and Eq.(95):

̇𝑈(𝑡 + Δ𝑡) = 𝛾
𝛽Δ𝑡

Δ𝑈(𝑡 + Δ𝑡) − 𝛾 − 𝛽
𝛽

̇𝑈(𝑡) − Δ𝑡𝛾 − 2𝛽
2𝛽

𝑈̈(𝑡) (94)

𝑈̈(𝑡 + Δ𝑡) = 1
𝛽Δ𝑡2 Δ𝑈(𝑡 + Δ𝑡) − 1

𝛽Δ𝑡
̇𝑈(𝑡) − 1 − 2𝛽

2𝛽
𝑈̈(𝑡) (95)

where 𝛾 and 𝛽 are the parameters of the Newmark-𝛽 method.

if 𝛾 and 𝛽 have the following values, it coincides with the linear acceleration method or the trapezoidal rule.
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As it is already known, when 𝛾 and 𝛽 are substituted into the following values, it will match the linear acceleration
method, or trapezoid rule.

• 𝛾 = 1
2

, 𝛽 = 1
6

(Linear acceleration method)

• 𝛾 = 1
2

, 𝛽 = 1
4

(Trapezoid rule)

If Eq.(94) and Eq.(95) are substituted into Eq.(93), the following equation is obtaind:

( 1
𝛽Δ𝑡2 M + 𝛾

𝛽Δ𝑡
𝐶 + 𝐾) Δ𝑈(𝑡 + Δ𝑡) = 𝐹(𝑡 + Δ𝑡) − 𝑄(𝑡 + Δ𝑡)

+ 1
𝛽Δ𝑡

𝑀 ̇𝑈(𝑡) + 1 − 2𝛽
2𝛽

𝑀𝑈̈(𝑡)

+ 𝛾 − 𝛽
𝛽

𝐶 ̇𝑈(𝑡) + Δ𝑡𝛾 − 2𝛽
2𝛽

𝐶𝑈̈(𝑡) (96)

𝐾𝐿 is linear stiffness matrix for linear problem; thus, 𝑄(𝑡 + Δ𝑡) = 𝐾𝐿𝑈(𝑡 + Δ𝑡). If this equation is substituted into
the equation above, the following equation is obtained:

{𝑀 (− 1
(Δ𝑡)2𝛽

𝑈(𝑡) − 1
(Δ𝑡)𝛽

̇𝑈(𝑡) − 1 − 2𝛽
2𝛽

𝑈̈(𝑡)) + 𝐶 (− 𝛾
(Δ𝑡)𝛽

𝑈(𝑡) + (1 − 𝛾
𝛽

) ̇𝑈(𝑡) + Δ𝑡2𝛽 − 𝛾
2𝛽

𝑈̈(𝑡))} +{ 1
(Δ𝑡)2𝛽

𝑀 + 𝛾
(Δ𝑡)𝛽

𝐶 + 𝐾𝐿} 𝑈(𝑡+Δ𝑡) = 𝐹(𝑡+Δ𝑡)

(97)

In the portion, where the acceleration is specified as a geometric boundary condition, the displacement of the following
equation is obtained from Eq.(94).

𝑢𝑖𝑠(𝑡 + Δ𝑡) = 𝑢𝑖𝑠(𝑡) + Δ𝑡 𝑢̇𝑖𝑠(𝑡) + (Δ𝑡)2 (1
2

− 𝛽) 𝑢̈𝑖𝑠(𝑡) + (Δ𝑡)2𝛽𝑢̈𝑖𝑠(𝑡 + Δ𝑡) (98)

Similarly, if the speed is specified, the displacement of the following equation is obtained from Eq.(98):

𝑢𝑖𝑠(𝑡 + Δ𝑡) = 𝑢𝑖𝑠(𝑡) + Δ𝑡𝛾 − 𝛽
𝛾

𝑢̇𝑖𝑠 + (Δ𝑡)2 𝛾 − 2𝛽
2𝛾

𝑢̈𝑖𝑠 + Δ𝑡𝛽
𝛾

𝑢̇𝑖𝑠(𝑡 + Δ𝑡) (99)

Where

• 𝑢𝑖𝑠(𝑡 + Δ𝑡) is the nodal displacement at 𝑡 + Δ𝑡,
• 𝑢̇𝑖𝑠(𝑡 + Δ𝑡) is the nodal speed at time 𝑡 + Δ𝑡
• 𝑢̈𝑖𝑠(𝑡 + Δ𝑡) is the nodal acceleration at time 𝑡 + Δ𝑡
• 𝑖 is the nodal degree-of-freedom (DOF)
• 𝑠 is the Node number.

Furthermore, the mass and damping terms were handled as follows:

1.5.1.1 (1) Handling of mass term

The mass matrices are handled as concentrated mass matrices.

1.5.1.2 (2) Handling of damping terms

The damping terms are handled as Rayleigh damping expressed in Eq.(100).

𝐶 = 𝑅𝑚𝑀 + 𝑅𝑘𝐾𝐿 (100)

where 𝑅𝑚 and 𝑅𝑘 are parameters of Rayleigh damping.
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1.5.2 Formulation of Explicit Method

The explicit method is based on the motion equation at time 𝑡 expressed in the following equation:

𝑀𝑈̈(𝑡) + 𝐶(𝑡) ̇𝑈(𝑡) + 𝑄(𝑡) = 𝐹(𝑡) (101)

where the displacement at time 𝑡 + Δ𝑡 and that at time 𝑡 − Δ𝑡 are expressed by the Taylor expansion at time 𝑡. If it
is expanded up to the secondary term with Δ𝑡, it becomes

𝑈(𝑡 + Δ𝑡) = 𝑈(𝑡) + ̇𝑈(𝑡)(Δ𝑡) + 1
2!

𝑈̈(𝑡)(Δ𝑡)2 (102)

𝑈(𝑡 − Δ𝑡) = 𝑈(𝑡) − ̇𝑈(𝑡)(Δ𝑡) + 1
2!

𝑈̈(𝑡)(Δ𝑡)2 (103)

From the difference and sum of Eq.(95) and Eq.(96), the following equation is obtained:

̇𝑈(𝑡) = 1
2Δ𝑡

(𝑈(𝑡 + Δ𝑡) − 𝑈(𝑡 − Δ𝑡)) (104)

𝑈̈ = 1
(2Δ𝑡)2 (𝑈(𝑡 + Δ𝑡) − 2𝑈(𝑡) + 𝑈(𝑡 − Δ𝑡)) (105)

If Eq.(104) and Eq.(105) are substituted into Eq.(101), the following equation is obtained:

( 1
Δ𝑡2 𝑀 + 1

2Δ𝑡
𝐶) 𝑈(𝑡 + Δ𝑡) = 𝐹(𝑡) − 𝑄(𝑡)

− 1
Δ𝑡2 𝑀[2𝑈(𝑡) − 𝑈(𝑡 − Δ𝑡)] − 1

2Δ𝑡
𝐶𝑈(𝑡 − Δ𝑡) (106)

For linear problems, specifically, 𝑄(𝑡) = 𝐾𝐿𝑈(𝑡), the above equation becomes

( 1
Δ𝑡2 𝑀 + 1

2Δ𝑡
𝐶) 𝑈(𝑡 + Δ𝑡) = 𝐹(𝑡) − 𝐾𝐿𝑈(𝑡)

− 1
Δ𝑡2 𝑀[2𝑈(𝑡) − 𝑈(𝑡 − Δ𝑡)] − 1

2Δ𝑡
𝐶𝑈(𝑡 − Δ𝑡) (107)

In this case, if mass matrix 𝑀 is set as a concentrated mass matrix, and the damping matrix as the proportional
damping matrix 𝐶 = 𝑅𝑚𝑀, Eq.(107) eliminates the requirement of solving operations for simultaneous equations.

Therefore, from Eq.(107), 𝑈(𝑡 + Δ𝑡) can be determined by the following equation:

𝑈(𝑡 + Δ𝑡) = 1

(
1

Δ𝑡2𝑀 +
1

2Δ𝑡
𝐶)

{𝐹(𝑡) − 𝑄(𝑡) − 1
Δ𝑡2 𝑀[2𝑈(𝑡) − 𝑈(𝑡 − Δ𝑡)] − 1

2Δ𝑡
𝐶(𝑡 − Δ𝑡)𝑈} (108)

1.6 Heat Conduction Analysis
In this section, the method of heat conduction analysis for solid bodies with the finite element methods used in this
development code is described.
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1.6.1 Basic Equation

The heat conduction equation in a continuous body is as follows:

𝜌𝑐𝜕𝑇
𝜕𝑡

= 𝜕
𝜕𝑥

(𝑘𝑥𝑥𝜕𝑇
𝜕𝑥

) + 𝜕
𝜕𝑦

(𝑘𝑦𝑦𝜕𝑇
𝜕𝑦

) + 𝜕
𝜕𝑧

(𝑘𝑧𝑧𝜕𝑇
𝜕𝑧

) + 𝑄 (109)

where,
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𝜌 = 𝜌(𝑥) mass (density)
𝑐 = 𝑐(𝑥, 𝑇 ) specific heat
𝑇 = 𝑇 (𝑥, 𝑡) temperature
𝐾 = 𝑘(𝑥, 𝑇 ) thermal conductivity
𝑄 = 𝑄(𝑥, 𝑇 , 𝑡) calorific value

𝑥 represents the position, 𝑇 represents the temperature and 𝑡 represents the time.

The area being considered is defined as 𝑆 and its surroundings as Γ. Assuming that Dirichet or Neumann-type
boundary conditions are given throughout Γ, the boundary conditions become as follows:

𝑇 = 𝑇1(𝑥, 5) 𝑋 ∈ Γ1 (110)

𝑘𝜕𝑇
𝜕𝑛

= 𝑞(𝑥, 𝑇 , 𝑡) 𝑋 ∈ Γ2 (111)

The function form of 𝑇1 and 𝑞 is known. 𝑞 is the outflow heat flux from the boundaries.

With this program, it is possible to consider three types of heat flux.

𝑞 = −𝑞𝑠 + 𝑞𝑐 + 𝑞𝑟 (112)
𝑞𝑠 = 𝑞𝑠(𝑥, 𝑡) (113)
𝑞𝑐 = ℎ𝑐(𝑇 − 𝑇𝑐) (114)
𝑞𝑟 = ℎ𝑟(𝑇 4 − 𝑇𝑟

4) (115)

where 𝑞𝑠 is the distributed heat flux, 𝑞𝑐 is the heat flux by the convective heat transfer, and 𝑞𝑟 is the heat flux by the
radiant heat transfer.

Furthermore,

𝑇 𝑐 = 𝑇 𝑐(𝑥, 𝑡) Convective heat transfer coefficient atomospheric temperature
ℎ𝑐 = ℎ𝑐(𝑥, 𝑡) Convective heat transfer coeffcient
𝑇 𝑟 = 𝑇 𝑟(𝑥, 𝑡) Radiation heat transfer coefficient atmospheric temperature
ℎ𝑟 = 𝜀𝜎𝐹 = ℎ𝑟(𝑥, 𝑡) Radiation heat transfer coefficient

𝜀: radiation rate, 𝜎: Stefan-Boltzmann constant, 𝐹: shape factor

1.6.2 Discretization

If Eq.(109) is discretized with the Galerkin method,

[𝐾]{𝑇 } + [𝑀]𝜕𝑇
𝜕𝑡

= {𝐹} (116)

However,

𝐾 = ∫ (𝑘𝑥
𝜕𝑁𝑇

𝜕𝑥
𝜕𝑁
𝜕𝑥

+ 𝑘𝑦
𝜕𝑁𝑇

𝜕𝑦
𝜕𝑁
𝜕𝑦

+ 𝑘𝑧
𝜕𝑁𝑇

𝜕𝑧
𝜕𝑁
𝜕𝑧

) 𝑑𝑉 + ∫ ℎ𝑐𝑁𝑇𝑁𝑑𝑠 + ∫ ℎ𝑟𝑁𝑇𝑁𝑑𝑠 (117)

𝑀 = ∫ 𝜌𝑐𝑁𝑇𝑁𝑑𝑉 (118)

𝐹 = ∫ 𝑄𝑁𝑇𝑑𝑉 − ∫ 𝑞𝑠𝑁𝑇𝑑𝑆 + ∫ ℎ𝑐𝑇 𝑐𝑁𝑇𝑑𝑆 + ∫ ℎ𝑐𝑇 𝑟(𝑇 + 𝑇 𝑟)(𝑇 2 + 𝑇 𝑟2)𝑁𝑇𝑑𝑆 (119)
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{𝑁} = (𝑁1, 𝑁2, … , 𝑁𝑖) (120)

Eq.(116) is a formula of non-linear and non-steady-state. The objective now is to discretize it in time by the backward
Euler method and calculate the temperature at time 𝑡 = 𝑡0 (when the temperature at 𝑡 = 𝑡0 + Δ𝑡 is known) with the
following equation:

[𝐾]𝑡=𝑡0+Δ𝑡{𝑇 }𝑡=𝑡0+Δ𝑡 + [𝑀]𝑡=𝑡0+Δ𝑡
{𝑇 }𝑡=𝑡0+Δ𝑡 − {𝑇 }𝑡=𝑡0

Δ𝑡
= {𝐹}𝑡=𝑡0+Δ𝑡 (121)

The next step is to improve the temperature vector {𝑇 }(𝑖)
𝑡=𝑡0+Δ𝑡 which approximately satisfies Eq.(121) to determine

the solution {𝑇 }(𝑖)+1
𝑡=𝑡0+Δ𝑡 with a good precision.

Therefore, the temperature vector must be expressed as follows:

{𝑇 }𝑡=𝑡0+Δ𝑡 = {𝑇 }(𝑖)
𝑡=𝑡0+Δ𝑡 + Δ{𝑇 }(𝑖)

𝑡=𝑡0+Δ𝑡 (122)

The product of the heat transfer matrix and temperature vector, as well as the mass matrix, are expressed approximately
by the following equations:

[𝐾]𝑡=𝑡0+Δ𝑡
{𝑇 }𝑡=𝑡0+Δ𝑡 ≅ [𝐾](𝑖)𝑡=𝑡0+Δ𝑡{𝑇 }(𝑖)

𝑡=𝑡0+Δ𝑡

+
𝜕[𝐾](𝑖)𝑡=𝑡0+Δ𝑡{𝑇 }(𝑖)

𝑡=𝑡0+Δ𝑡

𝜕{𝑇 }(𝑖)
𝑡=𝑡0+Δ𝑡

{Δ𝑇 }(𝑖)
𝑡=𝑡0+Δ𝑡 (123)

[𝑀]𝑡=𝑡0+Δ𝑡 ≅ [𝑀](𝑖)𝑡=𝑡0+Δ𝑡 +
𝜕[𝑀](𝑖)𝑡=𝑡0+Δ𝑡

𝜕{𝑇 }(𝑖)
𝑡=𝑡0+Δ𝑡

Δ{𝑇 }(𝑖)
𝑡=𝑡0+Δ𝑡 (124)

By substituting Eq.(122), Eq.(123) and Eq.(124) into Eq.(121), and omitting the terms of second or higher order, the
following equation is obtained:

⎛⎜
⎝

[𝑀](𝑖)𝑡=𝑡0+Δ𝑡

Δ𝑡
+

𝜕[𝑀](𝑖)𝑡=𝑡0+Δ𝑡{𝑇 }(𝑖)
𝑡=𝑡0+Δ𝑡

𝜕{𝑇 }(𝑖)
𝑡=𝑡0+Δ𝑡

{𝑇 }(𝑖)
𝑡=𝑡0+Δ𝑡 − {𝑇 }𝑡=𝑡0

Δ𝑡
+

𝜕[𝐾](𝑖)𝑡=𝑡0+Δ𝑡{𝑇 }(𝑖)
𝑡=𝑡0+Δ𝑡

𝜕{𝑇 }(𝑖)
𝑡=𝑡0+Δ𝑡

⎞⎟
⎠

{Δ𝑇 }(𝑖)
𝑡=𝑡0+Δ𝑡 = {𝐹}𝑡=𝑡0+Δ𝑡−[𝑀](𝑖)𝑡=𝑡0+Δ𝑡

{𝑇 }(𝑖)
𝑡=𝑡0+Δ𝑡 − {𝑇 }𝑡=𝑡0

Δ𝑡
−[𝐾](𝑖)𝑡=𝑡0+Δ𝑡{𝑇 }(𝑖)

𝑡=𝑡0+Δ𝑡

(125)

Moreover, the coefficient matrix of the left side is approximately evaluated with the following equation:

[𝐾∗](𝑖) =
[𝑀](𝑖)𝑡=𝑡0+Δ𝑡

Δ𝑡
+

𝜕[𝐾](𝑖)𝑡=𝑡0+Δ𝑡

𝜕{𝑇 }(𝑖)
𝑡=𝑡0+Δ𝑡

{𝑇 }(𝑖)
𝑡=𝑡0+Δ𝑡

=
[𝑀](𝑖)𝑡=𝑡0+Δ𝑡

Δ𝑡
+ [𝐾𝑇](𝑖)𝑡=𝑡0+Δ𝑡 (126)

where [𝐾𝑇](𝑖)𝑡=𝑡0+Δ𝑡 is a tangent stiffness matrix.

Finally, it is possible to calculate the temperature at time 𝑡 = 𝑡0 + Δ𝑡 through iterative calculation using the following
equation:
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[𝐾∗](𝑖){𝑇 }(𝑖)
𝑡=𝑡0+Δ𝑡 = {𝐹}𝑡=𝑡0+Δ𝑡

− [𝑀](𝑖)𝑡=𝑡0+Δ𝑡

{𝑇 }(𝑖)
𝑡=𝑡0+Δ𝑡 − {𝑇 }𝑡=𝑡0

Δ𝑡
− [𝐾](𝑖)𝑡=𝑡0+Δ𝑡{𝑇 }(𝑖)

𝑡=𝑡0+Δ𝑡

{𝑇 }(𝑖+1)
𝑡=𝑡0+Δ𝑡 = {𝑇 }(𝑖)

𝑡=𝑡0+Δ𝑡 + {Δ𝑇 }(𝑖)
𝑡=𝑡0+Δ𝑡 (127)

In steady-state analysis, the iterative calculation is performed with the following equation:

[𝐾𝑇](𝑖){Δ𝑇 }(𝑖)
𝑡=∞ = {𝐹}𝑡=∞ − [𝐾𝑇](𝑖){Δ𝑇 }(𝑖)

𝑡=∞

{𝑇 }(𝑖+1)
𝑡=∞ = {𝑇 }(𝑖)

𝑡=∞ + {Δ𝑇 }(𝑖)
𝑡=∞ (128)

In non-steady-state analysis, the discretization in time is done through the implicit method; thus, the analysis is
normally not affected by the restriction of the size of the time increment Δ𝑡. However, if the time increment Δ𝑡 is to
large, the number of convergences in the iterative calculation increases. Therefore, this program is equipped with
an automatic increment function, which constantly monitors the dimension of the residual vector in the iterative
calculation process. If the convergence of the iterative calculation is too slow, it decreases the time increment Δ𝑡.
Moreover, when the number of iterative calculations is too small, it increases the time increment Δ𝑡.

1.7 Eigenvalue Analysis
1.7.1 Generalized Eigenvalue Problems

In free oscillation analysis of continuous bodies, a spatial discretization is performed, and it is modeled with a
multi-DOF system with concentrated mass points as shown in Fig. 2.3.1. In the case of free oscillation problems
without damping, the governing equation (motion equation) is as follows:

𝑀𝑢̈ + 𝐾𝑢 = 0 (129)

where 𝑢 is the generalized displacement vector, 𝑀 is the mass matrix and 𝐾 is the stiffness matrix. Further, the
function is defined with 𝜔 as as the inherent angular frequency; 𝑎, 𝑏 and 𝑐 as arbitary constants; and 𝑥 as the vector:

𝑢(𝑡) = (𝑎 sin 𝜔𝑡 + 𝑏 cos 𝜔𝑡)𝑥 (130)

In this case, this equation and its second derivative, that is,

𝑢̈(𝑡) = −𝜔2(𝑎 sin 𝜔𝑡 + 𝑏 cos 𝜔𝑡)𝑥 (131)

is substituted into Eq.(129), which becomes

𝑀𝑢̈ + 𝐾𝑢 = (𝑎 sin 𝜔𝑡 + 𝑏 cos 𝜔𝑡)(−𝜔2𝑀 + 𝐾𝑥) = (−𝜆𝑀 + 𝐾𝑥) = 0 (132)

That is, the following equation is obtained:

𝐾𝑥 = 𝜆𝑀𝑥 (133)

Therefore, if coefficient 𝜆(= 𝜔2) and vector 𝑥 that satisfy Eq.(133) can be determined, function 𝑢(𝑡) becomes the
solution of formula.

The coefficient 𝜆 and vector 𝑥 are called eigenvalue and eigenvector, respectively, and the problem that determines
these from Eq.(129) is known as a generalized eigenvalue problem.
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Fig. 2.3.1: Example of a multi-DOF system of free oscillation without damping

1.7.2 Problem Settings

Eq.(133), which can be expanded to any order, appears in many situations. When dealing with physical problems, the
matrix is often Hermitian (symmetric.) In a complex matrix, the transpose is a conjugate complex number, and the
real matrix is a symmetric matrix. Therefore, when the 𝑖𝑗 components of matrix 𝐾 are defined as 𝑘𝑖𝑗, if the conjugate
complex number 𝑘 is set as 𝑘̄, the relationship becomes

𝑘𝑖𝑗 = 𝑘̄𝑗𝑖 (134)

In this study, it is assumed that the matrices are symmetric and positive definite. A positive definite matrix is a
symmetric matrix with all positive eigenvalues; that is, it always satisfies Eq.(135):

𝑥𝑡𝐴𝑥 > 0 (135)

1.7.3 Shifted Inverse Iteration Method

Structural analyses with the finite element method do not require all eigenvalues. In many cases, just a few low-order
eigenvalues are sufficient. As for HEC-MW, it was designed to deal with large-scale problems thus, the matrices are
large and very sparse (with many zeros). Therefore, it is important to consider this and determine eigenvalues of
low-order mode efficiently.

When the lower limit of eigenvalues is set to 𝜎, Eq.(133) is modified according to the following equation (which is
mathematically equivalent):

(𝐾 − 𝜎𝑀)−1𝑀𝑥 = 1
(𝜆 − 𝜎)

𝑥 (136)

This equation has the following convenient properties for calculation:

1. The mode is inverted.
2. The eigenvalue around 𝜌 are maximized.

In actual calculations, the maximum eigenvalue is often determined at the beginning. Therefore, the main convergence
calculation is applied to Eq.(136), rather than Eq.(133) to determine from the eigenvalues around 𝜌. This method is
called shifted inverse iteration.

1.7.4 Algorithm for Eigenvalue Solution

The Jacobi method is another such orthodox and popular method.

It is an effective method for small and dense matrices; however, the matrices dealt with by HEC-MW are large and
sparse; thus, the Lanczos iterative is preferred.

1.7.5 Lanczos Method

The Lancos method was proposed by C. Lanczos in the 1950s and is a calculation algorithm for triply diagonalizing a
matrix. The following are some of its characteristics:

1. It is an iterative convergence method that allows calculation of a matrix even if it is sparse.

2. The algorithm is focused on matrices and vector product, and suitable for parallelization.
3. It is suitable for the geometric segmentation associated with finite element mesh.
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4. It is possible to limit the number of eigenvalues to be determined and mode range to make the calculation more
efficient.

The Lanczos method creates sequential orthogonal vectors, starting from the initial vector, to calculate the basis
of subspaces. It is faster than the other subspace methods and is widely used in finite element method programs.
However, this method is easily influenced by computer errors, which may impair the orthogonality of the vectors and
interrupt it in the middle of the process. Therefore, it is essential to apply measures against errors.

1.7.6 Geometric Significance of the Lanczos Method

By converting Eq.(136) into a variable

𝑎𝑇 = 𝜕𝐹
𝜕𝜎

, [ 1
(𝜆 − 𝜎)

] = 𝜁 (137)

and rewriting the problem, the following equation is obtained:

𝐴𝑥 = 𝜁𝑥 (138)

An appropriate vector 𝑞0 linearly transformed with matrix 𝐴 (see Fig. 2.3.2).

Fig. 2.3.2: Linear Transformation of 𝑞0 with Matrix 𝐴

The transformed vector is orthogonalized within the space created by the original vector. That is, it is subjected to
a so-called Gram–Schmidt orthogonalization shown in Fig. 2.3.2. Thus, if the vector obtained is defined as 𝑟1 and
normalized (to length 1), it generates 𝑞1 (Fig. 2.3.3). With a similar calculation, 𝑞2 is obtained from 𝑞1 (Fig. 2.3.4),
which is orthogonal to both 𝑞1 and 𝑞0. If the same calculation is repeated, mutually orthogonal vectors are determined
up to the order of the maximum matrix.
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Fig. 2.3.3: Vector 𝑞1 orthogonal to 𝑞0

Fig. 2.3.4: Vector 𝑞2 Orthogonal to 𝑞1 and 𝑞0

The algorithm of the Lanczos method is a Gram–Schmidt orthogonalization on vector sequence
𝐴𝑞0

, 𝐴2
𝑞0

, 𝐴3
𝑞0

, … , 𝐴𝑛
𝑞0

or, in other words,
𝐴𝑞0

, 𝐴𝑞1
, 𝐴𝑞2

, … . This vector sequence is called Krylov sequence, and the space it creates is called Krylov subspace. If
Gram–Schmidt orthogonalization is performed in this space, two adjacent vectors determine another vector. This is
called the principle of Lanczos.

1.7.7 Triple Diagonalization

The 𝑖 + 1th calculation in the iteration above can be expressed as

𝛽𝑖+1𝑞𝑖+1 + 𝛼𝑖+1𝑞𝑖 + 𝛾𝑖+1𝑞𝑖−1 = 𝐴𝑞𝑖 (139)

In this case,

𝛽𝑖+1 = 1
|𝑟𝑖+1|

, 𝛼𝑖+1 = (𝑞𝑖, 𝐴𝑞𝑖)
𝑞𝑖, 𝑞𝑖

, 𝛾𝑖+1 = (𝑞𝑖−1, 𝐴𝑞𝑖)
(𝑞𝑖−1, 𝑞𝑖−1)

(140)

In matrix notation, this becomes
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𝐴𝑄𝑚 = 𝑄𝑚𝑇𝑚 (141)

In this case,

𝑄𝑚 = [𝑞1, 𝑞2, 𝑞3, … , 𝑞𝑚] , 𝑇 =
⎛⎜⎜⎜
⎝

𝛼1 𝛾1
𝛽2 𝛼2 𝛾2

⋯
𝛽𝑚 𝛼𝑚

⎞⎟⎟⎟
⎠

(142)

That is, the eigenvalues are obtained through eigenvalue calculation on the triply diagonalized matrix obtained with
Eq.(141).

1.8 Frequency Response Analysis
1.8.1 Formulation

The motion equation of frequency response analysis when damping is not considered becomes as follows:

𝑀𝑈̈ + 𝐾𝑈 = 0 (143)

If this is expanded for each eigenmode, it becomes

𝑈 = 𝑈𝑗𝑒𝑖𝜔𝑗𝑡 (144)

If this is substituted into Eq.(143), the following equation is obtained:

𝐾𝑈𝑗 = 𝜔2
𝑗 𝑀𝑈𝑗 (145)

The following is the proof that this eigenfrequency is real. By defining 𝜔2
𝑗 = 𝜆𝑗 removing the complex conjugate of

Eq.(145), Eq.(146), the following equation is obtained:

𝐾𝑈𝑗 = 𝜆𝑗𝑀𝑈𝑗

𝐾𝑈𝐽 = 𝜆𝐽𝑀𝑈𝐽 (146)

If this multiplied by 𝑈𝐽
𝑇, the following equation is obtained:

𝑈𝑗
𝑇𝐾𝑈𝐽 = 𝜆𝐽𝑈𝑗

𝑇𝑀𝑈𝐽

𝑈𝐽
𝑇𝐾𝑈𝑗 = 𝜆𝑗𝑈𝐽

𝑇𝑀𝑈𝑗 (147)

From Eq.(147), it becomes

0 = (𝜆𝑗 − 𝜆𝐽)𝑈𝐽
𝑇𝑀𝑈𝑗 (148)

In this case, the mass matrix is a positive-definite symmetric matrix; thus,

𝑈𝐽𝑀𝑈𝑗 > 0 (149)

holds for eigenvectors that are not zero vectors. Therefore,

𝜆𝑗 = 𝜆𝐽 (150)
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and 𝜔𝑗
2 = 𝜆𝑗 becomes a real number. In this case, two different modes are analyzed.

𝐾𝑈𝑖 = 𝜆𝑖𝑀𝑈𝑖

𝐾𝑈𝑗 = 𝜆𝑗𝑀𝑈𝑗 (151)

From this, the following is obtained:

(𝜆𝑖 − 𝜆𝑗)𝑈𝑗
𝑇𝑀𝑈𝑗 = 0 (152)

If the eigenvalue is different, it becomes

𝑈𝑗
𝑇𝑀𝑈𝑖 = 0 (153)

That is, different eigenmodes are orthogonal to the mass matrix. The advantage of same modes is that if they are
normalized for the mass matrix Eq.(154), the handling becomes easier.

𝑈𝑖
𝑇𝑀𝑈𝑖 = 1 (154)

Further, the frequency response analysis is formulated when damping is considered. The motion equation to be
analyzed is expressed in Eq. Eq.(155).

𝑀𝑈̈ + 𝐶 ̇𝑈 + 𝐾𝑈 = 𝐹 (155)

The damping term, assuming a Rayleigh-type damping, can be expressed as Eq.(155).

𝐶 = 𝛼𝑀 + 𝛽𝐾 (156)

With the eigenvector obtained in eigenvalue analysis, the displacement vector can be expanded at time t as in Eq.(157):

𝑈(𝑡) = ∑
𝑖

𝑏𝑖(𝑡)𝑈𝑖 (157)

where the external force term,

𝐹(𝑡) = {𝐹𝑅 + 𝑖𝐹𝐼}𝑒𝑖Ω𝑡 (158)

defines 𝑏𝑗(𝑡) in the harmonic oscillator equation. The following motion equation Eq.(155) acquires the form of forced
vibration holds:

𝑏𝑗(𝑡) = (𝑏𝑗𝑅 + 𝑏𝑗𝐼)𝑒𝑗Ω𝑡 (159)

If the real and imaginary parts of the expansion coefficient of 𝑏𝑖(𝑡) are determined, it becomes Eq.(160) and Eq.(161):

𝑏𝑗𝑅 =
𝑈𝑗

𝑇𝐹𝑅(𝜔𝑗
2 − Ω2) + 𝑈𝑗

𝑇𝐹𝐼(𝛼 + 𝛽𝜔𝑗
2)Ω

(𝜔𝑗
2 − Ω2)2 + (𝛼 + 𝛽𝜔𝑗

2)2Ω2 (160)

𝑏𝑗𝐼 =
𝑈𝑗

𝑇𝐹𝐼(𝜔𝑗
2 − Ω2) + 𝑈𝑗

𝑇𝐹𝑅(𝛼 + 𝛽𝜔𝑗
2)Ω

(𝜔𝑗
2 − Ω2)2 + (𝛼 + 𝛽𝜔𝑗

2)2Ω2 (161)
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